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Part 1: Background: Motivation & Theory




Token Relationship

* The sunrises above the river.

* The river flows through the forest.

* The forest is dense with tall trees.

« Treesswaygentlyinthe wind.
* The wind carries the scent of flowers.

* Flowers bloom brightly under the sun.

* The sun sets over the mountains.

* The mountains echo with the sound of birds.

* Birds fly freely across the sky.

* The sky turns dark as stars appear.

8/4/2025

How do we analyze token

relationship?

* Word Transition: which words lead to each other
in a piece of writing?

* Co-occurrence: which words tend to appear
together in a Transformer input/output context?

* Pointwise Mutual Information: how many times
more often two words co-occur than if they
were independent?
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Token Relationship Example: Word Transition

* “co-occurrence” of window size 1

rises river
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Token Relationship Example: Word Transition

above | dense | flows | forest is rises | river | sun tall the |through| trees | with
above | 0 0 0 0 0 0 0 0 0 i1\ 0 0 0
dense | 0 0 0 0 0 0 0 0 0 10} 0 0 1
flows | 0 0 0 0 0 0 0 0 0 0t 1 0 0
forest | 0 0 0 0 1 0 0 0 0 0t | 0 0 0
is 0 1 0 0 0 0 0 0 0 |!ot] 0O 0 0
rises | 1 0 0 0 0 0 0 0 0 |i0i]| O 0 0
river | 0O 0 1 0 0 0 0 0 0 |10t | O 0 0
sun 0 0 0 0 0 1 0 0 0 |{0o!]| 0O 0 0
tall 0 0 | 0 . 0| . o._...0 | 0 | _ 0| i0i]| 0 1 0
the |« "0 | O 2 0 0 2 1 0 | t0:! | o0 | 0 0w
through| 0 o | 0 f o0 [0 0 0T 00 [t1i] 0 | o 0
trees | 0 0 o/] o 0 0 0 0 0 10! 0 0 0
with 0 0 (}/ 0 0 0 0 0 1 0/ 0 0 0

Observations
* There is significant patterns in token relationships

* Tokens are not equal (in terms of frequencies)
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Token Relationship Example: Word Transition

aboye’| dense |“flows | forest | is | rises | river | sun | tall | the |thrqugh| trees | Wwjth

above | O 0 L] 0 0 0 0 0 0 1 |/ 0 0\,
dense | /0 0 0 0 0 0 0 0 o |/ 0 0 1\
flows |/ O 0 0\ O 0 0 0 0 0 0 ! 1 0 0
forest || 0 0 0 Y 0 1 0 0 0 0 0/ 0 0 0 !
is | 0 1 0 1 0 0 0 0 0 0 0 il 0 0 0 |
rises | 1 0 0 | O 0 0 0 0 0 0i|] 0 0 0o |
river || 0 0 1 | 0 0 0 0 0 0 0il O 0 0 |
sun | 0 0 0 0 0 1 0 0 0 0! 0O 0 0o |i
tall 1 o0 0 0 / 0 0 0 0 0 0 0 o 1 0
the [\ 0 0 0 /| 2 0 0 2 1 0 0 4y 0 0 0 !/
through| %, 0 0 0/ 0 0 0 0 0 0 1 [\ 0 0 0o/
trees | \0 0 0’ 0 0 0 0 0 0 0 |\O 0 0/

with | O | 0 | A 0 0 0 0 0 1 0 | 0o | 0

B g Observations RN o

Most other token frequency, out/in degree are 1or 0 * There is significant patterns in token relationships

* Tokens are not equal (in terms of frequencies)
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Token Relationship Example: Word Transition

 Observations

include

* There is significant patterns in token relationships
* Tokens are not equal (in terms of frequencies)

* Co-occurrence(sentence-wise)

|
* Tokens have underlying (hierarchical) structure &

vertebrates

mammals
| |
canines
|
whiteo dogs
| AN
swampwhiteoa northernredgak hound herdingdogs
| | |
easternswampwhitéoak latewood beagle shepherd
rareoak germanshepherd

"Lifeforms include animals and plants. Animals include vertebrates. Vertebrates include mammals. Mammals include canines. Canines include dogs. Dogs include herdingdogs and
hounds. Herdingdogs include shepherd. Shepherd include German shepherd. Hounds include beagle. Plants include trees. Tress include oaks. Oaks include white oak and red oak. White

oak include swamp white oak. Swamp white oak include Eastern swamp white oak. Eastern swamp white oak include rare oak. Red oak include Northern red oak. Northern red oak
include late wood... "
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Quantitate Analysis: Hyperbolicity

A four points interpretation:
Define (x,y),, = d(w,x) + d(w,y) —d(x,y)

1
= Esup{min{(x, Vw, 2w} — (x,2) )

for any four points x,y,z, w

Hyperbolicity quantifies the distance of a
graph from a tree-like structure
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Quantitate Analysis: Hyperbolicity (2)

0 =0, tree-like structure, no cycles.
0 = 0.25, one cycle, slight deviation from tree
metric.

0 = 0.5, moderate interconnectedness, more
00000000

loops.
Hyperbolicity(d)=0 Hyperbolicity(d)=0.5 _
0 = 0.75, dense structure, multiple loops, far

from a tree.

Smaller hyperbolicity indicates fewer cycles,

with certain nodes playing crucial roles.
Hyperbolicity(d)=0.25 Hyperbolicity(d)=0.75
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Quantitate Analysis: Hyperbolicity (3)

Deviation from Tree metric: The above is can be seen as picking a base point w and see
what kind of triangles can be drawn
* Turns out, the smaller the 6 value, the thinner are the allowed triangles

* |n a metric space, 6 measure how thin are the thickest triangles
® ® ®

> >

This is a measure of how much a metric space deviates from a tree metric: low hyperbolicity
means thin and long triangles facing the same direction with increasingly more points
distributed further from the origin

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 15



Hierarchies in LLLM Token Distribution

* Hyperbolicity (0-1): measures how much data points are tree-like

(hierarchical)

 Lower values indicate more hierarchical distribution

Table 2. 6-Hyperbolicity of the token embedding in various LLMs across several datasets.

Model arXiv C4 Common Crawl GitHub StackExchange  Wikipedia

RoBERTa-Base (Liu et al., 2019b) 0.15=0.06 0.18+0.04 0.17 = 0.04 0.124+0.04 0.17 = 0.07 0.07 £ 0.05
LLaMA3.1-8B (Grattafiori et al., 2024) 0.15£0.05 0.16 4 0.07 0.15 = 0.06 0.12 =+ 0.05 0.18 = 0.06 0.10 £0.04
GPT-NeoX-20B (Black et al., 2022) 0.14+0.03 0.17 = 0.06 0.15 £ 0.05 0.11 £0.04 0.14 £ 0.04 0.09 = 0.03
Gemma2-9B (Team et al., 2024) 0.17=0.06 0.19x0.04 0.20 £ 0.05 0.15 £+ 0.05 0.18 £ 0.04 0.15 = 0.03

Indicates hierarchical structure in token distribution

References: Neil He, Jiahong Liu, Buze Zhang, Ngoc Bui, Ali Maatouk, Menglin Yang, Irwin King,
Melanie Weber, and Rex Ying. 2025. Position: Beyond Euclidean—Foundation Models Should

Embrace Non-Euclidean Geometries. arXiv:2504.08896 (2025).
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Reference values

Table 3. Hyperbolicity values é for different metric spaces.

‘ Sphere Space  Dense Graph PubMed Graph  Poincare Space

5| 0.99+0.01

0.62+0.01

0.40 £ 0.04

0.14 +£0.01

Neil He, Menglin Yang, Rex Ying, Yale University
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Embedding Hyperbolicity vs Graph Hyperbolicity
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Positive correlation between graph hyperbolicity and embedding hyperbolicity

Compute token embedding hyperbolicity as a proxy for structure; lower values indicate a more tree-like shape.
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Scale-Free Property in Token Relationships

» Scale-free property across foundation models and modalities
* Very few (exponentially) tokens appear very frequently/have large norm

Token Frequency (x-axis) v.s. Token count (y-axis) Token norm (x-axis) v.s. Token count (y-axis)
“How many tokens appears x number of times” “How many time does a token with norm of value x appear”
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Corpus: RedPajama (subset) (arXiv, C4, Common Crawl, GitHub, Wikipedia, and StackExchange); Mathematical Reasoning (GSM8K, MATH50K, MAWPS,
SVAMP); Common Sense Reasoning (BoolQ, WinoGrande, OpenBookQA)

References: Neil He, Jiahong Liu, Buze Zhang, Ngoc Bui, Ali Maatouk, Menglin Yang, Irwin King, Melanie Weber, and Rex Ying. 2025. Position: Beyond Euclidean—Foundation Models Should Embrace Non-Euclidean
Geometries. arXiv:2504.08896 (2025).
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Embedding Norm vs Token Frequency

References: Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. 2024. Hyperbolic Fine-tuning for Large Language Models. ICML LLM Cognition Workshop (2024).

8/4/2025

Table 7: Mean, Minimum, and Maximum Norm Values for Different Models and Groups

Model Group Norm (Mean (Min~Max))
Group 1: to, have, in, that, and, is, for 0.95 (0.79~1.06)
Group 2: how, much, many, time, cost 1.22 (1.12~1.30)
LLaMA-7B Group 3: animals, fruit, numbers, items, colors 1.36 (1.32~1.43)
Group 4: dog, cow, apple, hours, dollars, minute, second, shoes, 1.37 (1.31~1.44)
purple, bananas, puppies
Group 1: to, have, in, that, and, is, for 1.03 (0.83~1.26)
Group 2: how, much, many, time, cost 1.43 (1.35~1.49)
LLaMA-13B Group 3: animals, fruit, numbers, items, colors 1.50 (1.46~1.54)
Group 4: dog, cow, apple, hours, dollars, minute, second, shoes, 1.50 (1.47~1.57)
purple, bananas, puppies
Group 1: te, have, in, that, and, is, for 3.16 (3.06~3.30)
Gemma-TB Group 2: how, much, many, time, cost 3.56 (3.49~.3.63)
Group 3: animals, fruit, numbers, items, colors 3.84 (3.71~3.92)
Group 4: dog, cow, apple, hours, dollars, minute, second, shoes, 4.03 (3.43~4.82)
purple, bananas, puppies
Group 1: to, have, in, that, and, is, for 0.35 (0.33~0.40)
) Group 2: how, much, many, time, cost 0.46 (0.39~0.50)
LLaMA3-8B Group 3: animals, fruit, numbers, items, colors 0.53 (0.51~0.55)
Group 4: dog, cow, apple, hours, dollars, minute, second, shoes, 0.59 (0.50~0.70)

purple, bananas, puppies

Neil He, Menglin Yang, Rex Ying, Yale University
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Embeddings Space Choices

* The embedding space is crucial for a model to faithfully represent such
relationships between data points
* Should Euclidean geometry remain the de facto choice for foundation models?

Embedding space R"

Foundation

—— — Generation / Downstream Tasks
Model

v

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 20



Embeddings Space Intuition

above | dense | flows | forest iS rises | river sun tall the |through| trees | with
above 0 0 0 0 0 0 0 0 0 1 0 0 0
dense 0 0 0 0 0 0 0 0 0 0 0 0 1

Attention score: computed Embedding space R"

through inner product/cosine t above
similarity the
[
Intuition: Co-occurring words
should be embedded closer
together! dense
* Frequently co-occurring ®
@ with
should attend more to each >
other !

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 21



Example: Embedding Tree-structured Data
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Example: Embedding Tree-structured Data
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Example: Embedding Tree-structured Data

So far, so good
LT Nodes are close i.f.f. they
' are connected by an edge

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 24



Example: Embedding Tree-structured Data
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8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 25



Example: Embedding Tree-structured Data

8/4/2025

Neil He, Menglin Yang, Rex Ying, Yale University

But the outermost
nodes are becoming
increasingly close to one
another.

Even though they are

not connected by an
edge in the graph.
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Example: Embedding Tree-structured Data
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But the outermost
nodes are becoming
increasingly close to one
another.

Even though they are

not connected by an
edge in the graph.
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Example: Embedding Tree-structured Data
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Issues with Euclidean Embeddings: Distortion

* Euclidean space leads to significant distortion regardless of the embedding
dimensions

(Informal; Lee et al., (2007)) There is a lower bound in the minimal distortion of
embedding hierarchical structures (e.g. token relationships) into Euclidean space (R" ).

“There is a performance bottleneck on how well Euclidean
foundation models can represent complex token relationships”

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 29



Issues with Euclidean Embeddings: Dimension Dilemma

* Euclidean space face the dilemma of dimension-distortion tradeoffs

* High dimensionality is often required to embed complex token relations in Euclidean
space with (relatively) low distortion

(Informal; Matousek (2002)) The dimension required when embedding unweighted graphs

(in the form of token relationships/self-attention) grows near-quadratically w.r.t to
distortion.

“Euclidean foundation models have limited scalability”

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 30



Hyperbolic Embedding Space

Potential Solution:

root / origin
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The volume of a ball in the hyperbolic
31

space grows exponentially with its radius
Neil He, Menglin Yang, Rex Ying, Yale University
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Hyperbolic Geometry for Foundation Models

We need an embedding space that can
better represent token relationship!

* The distance between low-level tokens on different branches
should be maximized and far away

root / origin

* The distance between a high-level token and a low-level
token should be minimized and close

 Solution: any tree (i.e. hierarchical
distribution) can be embedded into

hyperbolic space with arbitrarily low
distortion!!

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 32



Riemannian Manifold

* Manifold: high-dimensional surface

e Riemannian Manifold M
° Eqmpped with w,v €TL,M, g,(u,v) ER

* Tangent space T, M : an R4 that approximates the T M
manifold at any pointp € M’

* Inner product g,: T, M X T,M = R

* Both functions vary smoothly (differentiable)
on the manifold

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 33



Tangent Space

 Curve: smooth path along manifold y:[0,1] - M
* Speed: direction of change along the curve y:[0,1] - I, M

* Tangent space 7', M: space of speed vectors v of all curves y that go
through point x on the manifold M

TxM

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 34



Curvature

* The curvature (sectional curvature) at a point measures how drastically a
surface bends away from its tangent plane at this point

High-level Intuition:

* If the surface locally lives entirely on one side of the tangent space 7, M' = Positive
curvature at point p

* If the tangent space 7, M cuts through the surface = Negative curvature at point p

* If the surface has a line along which the surface agrees with the tangent space
J,M = Zero curvature at point p

— — —

positive curvature negative curvature zero curvature
8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 35


https://en.wikipedia.org/wiki/Sectional_curvature

Hyperbolic Space

* Hyperbolic space is a Riemannian manifold with constant negative curvature
— 1/K, where (K > 0)
* Becomes Euclidean when K — o

* In Euclidean space, we can also find manifolds with constant negative
curvature:

One-sheet hyperboloid Periodic Amsler Surfaces

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 36


https://maths.dur.ac.uk/users/christopher.prior/hyperbolic1.pdf
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https://maths.dur.ac.uk/users/christopher.prior/hyperbolic1.pdf

Hyperbolic Space and Minkowski Space

* Hyperbolic space can be naturally embedded into a Minkowski Space

* The Minkowski metric in the Minkowski space is different from the Euclidean
metric.
* Euclidean Metric: gz (u,v) = ugvy + uv; + - + uyvy
* Minkowski Metric: gy (1, v) = +(ugvy — U vy — =+ — UgVy)
* Without loss of generality we can take the + sign

* Note: dimension 1 is treated differently in Minkowski Space.

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 37



Inner Product

* Hyperboloid model as a Riemannian manifold:

 With Constant Minkowski metric:
<"'>L . Rd+1 X ]Rd+1 >R

S\Re L IGHT COV

(X, V) =[—x0y0]+[x1y1 + ...+ xdyd] OBSERVER —

/ N

Time-like Space-like PAST L1GHT CONE

* Hyperboloid model H*X = {x € R**!: (x,x), = —K}, —% is the curvature

* Note: the points in hyperboloid model H*Xare represented in (d + 1)-dimensional
Minkowski space.

 The metric of hyperboloid model is different from the Euclidean metric!

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 38



Hyperboloid in Different Spaces

Euclidean Metric Minkowski Metric
9e(x,y) = x1y1 + X252 + x3Y3 gu(x,y) = —x1y1 + X2y, + x3Y3

This is hyperbolic

Two sheet hyperboloid in 3D Euclidean space 2D Hyperboloid model in 3D Minkowski space

Geodesic distance in Euclidean hyperboloid: Geodesic distance in Minkowski hyperboloid:
de(x,¥)=/2(1 — gg(x,¥)) D (x,y) = VKarcosh(— W)
(with normalized x and y)

Performing deep learning operations in hyperbolic space is non-trivial

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 39



Poincaré Model

* Poincaré Model

e Radius proportional to VK (—% is the
curvature)
e Open ball (exclude boundary)

* Each triangle in the figure
has the same area

* Exponentially many triangles with the same
area towards the boundary of Poincaré Ball

Poincaré: intuitive visualization

Other models exist as well, e.g. Klein model

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 40



Equivalence

* d-dimensional Poincaré model and e T T
(d + 1)-dimensional hyperboloid "
model are equivalent!

e 2d Poincaré model can be derived
using a projection of 3d hyperboloid
model through a specific point onto \
the unit circle of the z = 0 plane. Projection from Baoy

t Equivalent
..,“ %

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 41



Geodesic

e Geodesic: shortest path in manifold
* Analogous to straight lines in R™
e Curved in hyperbolic space

 Geodesics visualization in Poincaré model: curved!

Set of geodesic lines from the
red point to boundary of the
Poincare ball that are parallel
to the blue line

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 42



Geodesic Distance

* Geodesic distance between x and y for H*X:

DX (x,y) = VKarcosh(— XY

K

)

* Negative Lorentz Distance: Df(x, y) = % — 2{x,¥) ¢

* The more negative the curvature:
* the more geodesics bends inward
e geodesic distance increases

3.5

3.0

arcosh(x) = In(x + v x%2 + 1)

Dark blue: high curvature boundary and geodesics
Light blue: low curvature boundary and geodesics

1.0}

Sk T p—-——

/K

8/4/2025
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Tangent Space

* Tangent space expression under hyperboloid model H%X at point x:
e T.HYK = {y € R*: (p,x), = 0}

* A vector space (linear structure) with the same dimension as the
hyperboloid model: it is Euclidean!

* The best linear approximation to the manifold H%K at point x

Hyperboloid model

d: hyperbolic space dimension
K: negative inverse of curvature

h — Tangent space at north pole o

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 44



Mapping to and from Tangent Space

» Exponential map: 7,HYK — HK
* from tangent space (Euclidean) to
manifold
* Logarithmic map: HX — 7, HIK
* from manifold to tangent space
* inverse operation of exponential map

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 45



Exponential Map:

* For hyperboloid model HK = {x € R%*1: (x, x), = —K} at point x
* Exponential Map:

exps (v) = cosh (”\/H’C) x + VK sinh (”ﬂﬁ) ”;”
L

e v € T,HIK
X
e cosh(x) == +2e

 [[vll, =(v,v);

eX—e

— sinh(x) =
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Logarithmic Map

* For hyperboloid model HK = {x € R%*1: (x, x), = —K} at point x
* Logarithmic map:

1
y + F<x' y>Lx

logx y = Dp (%, ) 7——
dK I+ ],
ey € H"™

 DX(x,y) = VKarcosh(— <x’;'>’£) is geodesic distance
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Parallel Transport (1)

 Parallel Transport: transport a vector along a smooth curve on the surface
and keep parallel to itself locally.

N |

Transport a tangent vector v along the
surface with non-zero curvature. When
travelling from A to N to B back to A, the
direction of the vector v changes!
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Parallel Transport (2)

* Parallel Transport P, () maps a vector v € I, M to P, (V) € I, M

* If two points x and y on the hyperboloid HYK are connected by a geodesic,
then the parallel transport of tangent vector v € f]}IHId'K to Ty]HId'K:

(logx (3), V),
DX (x,y)?

[ Pey(@) = v (log§ y + logf x) ]

* logK is the Logarithmic map at point x.

 DX(x,y) = VKarcosh(— u’?‘:) is geodesic distance
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Euclidean Embedding: Common Misunderstanding

* Nash Embedding Theorem (and similar): roughly, any n-dimensional
Riemannian manifold can be embedded in R?™

* This is an embedding of manifolds instead of metric spaces, i.e. distance is still
globally distorted

Isometric Embedding of Manifolds Isometric Embedding of Metric Spaces
e Shortest path between points are not * Distance between any two points
necessarily the same globally (global behavior) is preserved in the
e e.g. Embedding sphere in Euclidean new space
Space e.g. Rotation

CHE o0
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End of Part 1




Part 2: Building Blocks for Hyperbolic

Operations: Hyperbolic Neural Operations



Hyperbolic Operations: Difficulties

Addition in Euclidean Space Addition in Hyperbolic Space?

out!

Considerations:

1. Satisfy manifold
constraints

2. Satisfy neural operation
properties
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Categorization of Hyperbolic Operations

In general, there are two types of hyperbolic operations:
e Tangent-space-based operations, which we will denote f1%
* K is the curvature of the embedding space

* T indicates the operation is implemented through the tangent-space-based
method

* Fully hyperbolic operations, which we will denote ff¥
e K is still curvature

* F indicates a fully hyperbolic operation
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Strategy 1: Tangent-Space Based Operations (1)

Recall: The tangent space is an Euclidean space

* Intuition: we know how to perform Euclidean operations!

General Recipe: Use a Euclidean function f: R%*1 - R%*1 on the
tangent space

* e.g. Linear transformer: f(x) = Wx + b, non-linear activation: f(x) =
ReLU(x)

Image Source: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems 32 (2019).
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Strategy 1: Tangent-Space Based Operations (2)

l Map input to tangent space of the origin, so f is a valid operation ]

[ Perform Euclidean operation ]

| Lift the output back to HYK |

(77X = expX (f(logk () )

Image Source: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems 32 (2019).
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Strategy 1: Cons

Computational Inefficiency: the repeated mappings
to and from the tangent space cause significant
computational overhead

Numerical Instability: the mappings could cause
numerical stability issues; e.g. in logarithmic map:

1
y+?<x'y)£x

logky = Df (x,y)

|y + % @ wex|

Image Source: Chami, Ines, etal. "Hyperbolic graph
convolutional neural networks." Advances in neural information

If the points are close together, we risk dividing by pocesine e 32 2019
or calling arccosin on 0.
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Strategy 1: Cons: Lorentz Rotation & Lorentz Boost

Expressiveness Issues: transformations implemented through f "% might not cover all types
of operations

e Lorentz linear transformation consists of a Lorentz Boost and a Lorentz Rotation, but
tangent-space-based operations do not cover all cases

Rotating the spatial axis by
applying a rotation matrix
/ “"—___ on the space-like dimension

Constant velocity
transformation without
rotating the spatial axis

Lorentz Boost Lorentz Rotation

Image Source: Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).
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Strategy 2: Fully Hyperbolic Operations

Solution: operate directly on the manifold “Fully Hyperbolic”

Two strategies: Pseudo Lorentz Rotation v.s. Pseudo Lorentz Boost

Pseudo Lorentz Boost : Use a Euclidean function f: Rt1 —» R4

* e.g. Linear transformer: f(x) = Wx + b

[ Perform f on x € H%K ] Computes output with both time
and space dimensions of the inputs

[ Compute the associating time-like

: : ] Impose Lorentzian constraints
dimension

fF’K (x) = (\/l |Wxtime,space| -1/K, Wxtime,space

| )
) time—like dim space—like dim

Reference: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781.
Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).
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Strategy 2: Fully Hyperbolic Operations Cont’d

Solution: operate directly on the manifold “Fully Hyperbolic”

Two strategies: Pseudo Lorentz Rotation v.s. Pseudo Lorentz Boost

Pseudo Lorentz Rotation: Use a Euclidean function f: R% - R

* e.g. Linear transformation: f(x) = ReLU (x)

Transformation on only the space

[Perform f on the space-like dimension of x € ]Hld'K] dimension

|Compute the associating time-like dimension| Impose Lorentzian constraints

v

fr¥ @) = Jllf(xspaceﬂ T 1K, f(xspace)
time—like dim space—like dim

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781.
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Strategy 2: Fully Hyperbolic Operations Cont’d

Example: Tangent-space-based Linear First coordinate of
Transformation f1Xis a Pseudo Lorentz - - - -~ _ _ . tangent vectors(of the
Rotation! R orlgln) is 0, so the upper
TG = expS PR IY 0 £(2)1988 (opace) et entry does not
c fL)=Wx+b @ affect the output
i cosh(f) 0 )

T K | ~KXxtime Xtime .

R =7 | (com)
ﬁl [WXspacel |

V —Karccosh(\/—thime)W

\/_Kx/\ztime )

Image Source and Reference: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems
32 (2019).
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Strategy 2: Fully Hyperbolic Operations Cont’d

Pseudo Lorentz Rotation v.s. Pseudo Lorentz Boost: Comparison

Pseudo Lorentz Rotation: transformation Pseudo Lorentz Boost: transformation on
on without time and space interaction both time and space-like dimension

( Xtime )
xspace

Off-diagonal values are zero Non-zero off-diagonal terms

\/l |f(xspace)| 12-1/K

(xtime) /\/IIWxI

Xspace

‘2 —1/K
Q) ?
\

el:d'

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD.3770-3781
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Refining Hyperbolic Operations

Intuition: take advantages of the freedom in curvature — vary the curvature through
hyperbolic operations/layers

* For tangent-space-based operations: fKT o (%)

* For fully hyperbolic operations: f,f Kr(x) =

Recalibrate coefficient for curvature changes:

K '
X = expX (logk(x))
\
* Tangent space at the origin is the same across different curvature spaces!

Reference: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing sy stems 32 (2019).
Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781.
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Hyperbolic Residual Connection & Addition

Recall: Addition is difficult in hyperbolic space!

Tangent-space based method: Mdébius Addition based on parallel transport:

[ x Dpy = expy (Psx(logs (1)) ]

Vector Space formulation  Gyrovector Space formulation
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Hyperbolic Residual Connection & Addition

Recall: Addition is difficult in hyperbolic space!

Fully hyperbolic method: generalized
Lorent weighted sum /'I]y 00

.......
.

 xPLy= ‘i(}x +B8y y e \ } 4? \

\ / — x w/o Mappings Cost '
K || |Wxx + Wyyl ||L x w/o Prarallel Cost v w/0 Mappings Cost
x w/o Mappings Error v w/o Prarallel Cost
Wy v w/0 Mappings Error

b =\/—K|||Wxx+wyy|||L xDpy x DLy

w,,w, >0
\ Y / More efficient, stable,
and expressive!

Image Source: Neil He, Menglin Yang, and Rex Ying. 2025. Lorentzian Residual Neural Networks. In KDD.
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Euclidean Self-Attention

Self-attention is a vital component in Euclidean
Transformer-based foundation models:

* LLMs —text data

* ViTs —visual data

e CLIP models — multi-modal data

The key is to compute a weighted sum of value exp(0.KT NTD)
vector {V;} using weights based on similarity Z; = ’
scores of keys {K;} and queries {Q;}

V-
%1 exp(Q;KT N’

j=1

How to generalize midpoint

operations to hyperbolic space?
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Hyperbolic Midpoint Operations

Hyperbolic midpoint has close forms in Lorentz model LMidy, Poincare mode PMidy,
and Klein model KMid (Einstein Midpoint)
* All of these operations are equivalent under isometric mappings

Lorentzian Midpoint

2 Y%
vV—K
Plot of Lorentzian Midpoint ”lZJ J Jl”

(purple) Poincaré Midpoint 2
| 1.~ X;v ]\Axf/' T T+ KX

PMidy(x1, ..., %y; ;) ZEI\QIZ))( % vl (A1)

LMidg (xq, ..., xy; {v;}) =

Gyrovector space scalar multiplication:
implemented through 7%

References and Image Source: Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. 2019. Lorentzian distance learning for hyperbolic representations. In ICML. PMLR, 3672—-3681.
Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. 2020. Hyperbolic Neural Networks++. In ICLR
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Hyperbolic Self-Attention

Hyperbolic self-attention can be
formulated with hyperbolic midpoint
operations and similarity score
computed using negative hyperbolic

distance Hyperbolic Self-Attention

LAtten(Q,K,V) = LMid (vp oo UN @ ) ,-=1)
PAtten(Q,K,V) = PMid (vl' ""UN’{ai'j}jzl)
Attention Score

exp(—d5(q:,v;))

a . . =
Yooy exp(—dA(g;, v
¢ €XP(—A[\q;, Uy
References: Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. 2020. Hyperbolic Neural Networks++. In ICLR

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and lJie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).
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Hyperbolic Linear-Attention (1)

Hyperbolic self-attention requires quadratic time
complexity w.r.t. input tokens:

Hyperbolic Softmax Attention N{

Many applications such as graph Transformers ) e+
requires the model to handle long context { . }
N« [Sim*(Q,K) N

\_ N ?:1 o

. .
N{ Q KT }d’+l \ }N
' —
\_ .

Solution: linear time approximation
for attention mechanism

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD.3770-3781.
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Hyperbolic Linear-Attention (2)

Hyperbolic Linear Attention
Q' =¢(Qs), K' = ¢p(Ky), V' = p(Vg)
- 1T
. , 1 F
Lidttng ., (Q, K, V) = [lIZ]|* — K,’ |+ ek, (V)
Al TV ) N
— Q (K V) Hyperbolic Linear Attention
Q’(K’Tl) 1+Td
Notations N{ ol H(K) TV,
Q' = $(Q5). K" = ¢(K,), V' = p(V5) d 0

X

¢(x) =

t
Rl
X = ReLU(X)/t H{% d[ Ku ﬂ} N
t, p hyperparameters —

: . . ~ ol ~d
X denotes the space-like dimension

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD.3770-3781
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Hyperbolic Normalization Methods

Normalization methods are critical for neural network and foundation models, e.g.

* Layer normalization in Transformers
e Batch normalization in Convolutional Neural Networks

Considerations:
* Meaningful normalizing operations
 Computational efficiency
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Hyperbolic Normalization Methods Cont’d

Consideration 1: Meaningful normalization — similar to the Euclidean case, the goal is
to center the feature vectors across batches/layers and scale the keep the variance of
their norms within a manageable range
* |nitial work proposed using the Frechet Mean
* However, this is computational expensive

* Upto 77% of all compute in the forward pass in hyperbolic CNNs!

Consideration 2: Computational efficiency

References: Maxvan Spengler, Erwin Berkhout, and Pascal Mettes. 2023. Poincaré ResNet. CVPR (2023)
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Hyperbolic Batch Normalization

Method 1: use hyperbolic midpoint operations instead of Frechet mean
* Approximately centering the vectors at the origin

[ Compute mean u = PMidg (x4, ..., x5, 11}) (oru = ]
LMidg (x4, ..., xn,{1}))

Set new mean as learnable 8 I

\ 4

[ Compute variance g% = %Zi ds (x;, 1) ]

Optional: re-centering at the
origin first: simple geodesics at
the origin

Po—>ﬁ (g Pu—>o (logﬁ(xi)))

Return normalization term X; =
Pu—>ﬁ (logﬁ(xi))

Learnable parameters

References: Maxvan Spengler, Erwin Berkhout, and Pascal Mettes. 2023. Poincaré ResNet. CVPR (2023)
Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. 2024. Fully Hyperbolic Convolutional Neural Networks for Computer Vision. In ICLR.
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Hyperbolic Layer Normalization

Method 2: use fully hyperbolic formulation in Lorentz space
 Computationally efficient
* Retain normalizing capabilities

Normalizing the space-like dimension: y, = LayerNorm(x,)(or ys =
RSMNorm(x;), etc)

4 )

Compute the time-like |[ 1T Normahz-mg.space dimension approximates
. . 1 normalization locally and centers around
dimension and return 1yl I2 ==, Ve

normalized vectors: K the origin: 0 = [\/—%,O, ...,O]
g J

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer:
Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781

Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex
Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint
arXiv:2505.24722 (2025).
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Hyperbolic Positional Encoding (1)

Positional encodings (PE) enables the model to learn ordering information of tokens in
the input sequence

Learn relative positional information:
* Though hyperbolic addition: PEg (x) = x @, [ef"* (x)]; € learnable parameters
* Adding positional encoding as bias term in fX:

* Assumes PE also follows a linear layer

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781
Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint

arXiv:2505.24722 (2025).
Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and lJie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).
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Hyperbolic Positional Encoding (2)

Pros of relative positional encoding:
* Improves generalizability to different sequence length
* Improves context understanding

Cons of relative positional encoding:
* Introduces additional parameters and computational/memory costs
* Potential overfitting & requires further tuning

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781

Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint
arXiv:2505.24722 (2025).

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).
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Hyperbolic Rotary Positional Encoding (1)

Alternative: Rotary incorporates aspects from both absolute and relative encoding method
* Euclidean RoPE: apply rotational matrix to feature vectors

mply Lorentzian \
i AT

1
HoPE(z;) = | ||IR;e(2)s]]* — E»Ri,e(zi)s
N

0= {6;...,0a}
2

R; ¢ € RY*? where the diagonal are 2 X 2
block matrices Rilgj, which are 2 X 2 rotation

matrices of angle i6;
\ Z; can either be query g; or key k; /
Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint
arXiv:2505.24722 (2025).
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Hyperbolic Rotary Positional Encoding (2)

* Long-term decay: the attention score between a key-query pair decays when the
relative position increases

* Robustness: robust attention across arbitrary relative distances

* Learning Complex Relations: attention heads with HoOPE can learn diagonal(attends to
only itself) and off-diagonal(attends to only predecessor) attention patterns

Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint
arXiv:2505.24722 (2025).

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 79



Hyperbolic Concatenation

Hyperbolic concatenation and splitting for merging heads in multi-head attention

* Poincare Concatenation: Catp (x4, ..., X,) =
[eXpoyﬁl_l(logo (xl))T; o) eXpoyﬁﬁl(logo (xn))T |

* v,b; €EB (g,%), B (g,%) beta distribution

* Lorentz Concatenation: Cat; (x4, ..., X,) = [\/||y||2 —%,y] vy = ()L, o, ()T

Other Hyperbolic Neural Operations
* Hyperbolic convolutional layers

* Hyperbolic neighborhood aggregation

References: Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. 2020. Hyperbolic Neural Networks++. In ICLR
Eric Qu and Dongmian Zou. 2022. Lorentzian fully hyperbolic generative adversarial network. arXiv:2201.12825 (2022).
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Hyperbolic Latent-Attention

Size of KV-Cache for Hyperbolic MHA per Layer: O(nny)
e 1 = number of heads [ ouputTokens )
* n; = dimension per head

—m

Hyperboiic =

Reduce the KV-Cache: Hyperbolic MLA 5 it H :

| Hyperbolic Concat | Hyperbolic Concat

1. Project input token x to latent vectors c¥, cXV of
dimensions ng, n,,

Upward

Project g
* qu, Ny Kn &;)Z:rion KeLatS:ltue
2. Project latent vectors back to dimension n, CIHLT
Input Tokens ]

obtain|k{| _ ,[v{] _ fromcXVand|q{] _ from c? |

References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts.
arXiv preprint arXiv:2505.24722 (2025)
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Hyperbolic Latent-Attention (2)

Reduce the KV-Cache: Hyperbolic MLA

3. Decoupled positional encoding: account to
dependency on token index
* Project latent vectors to rotational queries [qf

[ Output Tokens ]

—m

]iSn

and a shared key k© of dimensions nn,. ,n, perote =
* Perform HoPE on these vectors Q H v
4. Concatenate [qf],_,,[af],_, and [KE],,. k" =
through Lorentzian concatenation ‘;d ‘: ) “’HHOP i
5. Compute hyperbolic attention as usual e O (o
LT
We only need to store the latent vectors in the cache ( inputTokens )

y lexi (nny)
Complexity O (n(nq, nkv)) K O(nny
References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts.

arXiv preprint arXiv:2505.24722 (2025)
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Hyperbolic Operations in Practice: HNNs

Hyperbolic MLP

* Hyperbolic Linear layer with hyperbolic activation

* Either tangent-space based methods f1<T1,K2 or fully

hyperbolic methods fy,
i 8

Tangent-space Tangent-space
Linear Layer Activation
or or
Fully Hyperbolic Fully Hyperbolic /
Linear Layer Activation /
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Hyperbolic CNNs and GNNs

Can build hyperbolic CNNs and GNNs as well!

Hyperbolic CNN Hyperbolic GNN Embeddings

. Hyperbolic
Input z C%fy\'pg:r?glcfer Classification
Head . '
R o g taantd s A
- a o "% P e 3 P e ; o
| —) ) ass: LN S S 251 I iy T e e % . , )
a Elephant Mht: 2e “;‘ .’1". A v -'. . 3 2
" n ~ MLR S TiC ol W T VRNt T N L '
Lk L-’\' Hyperplane ‘ : A% “.'-‘:" . o J B8N \
' " o
\ (a) GCN layers. (b) HGCN layers. (c) GCN (left), HGCN (right).
Hyperbolic Image Source: Chami, Ines, etal. "Hyperbolic graph convolutional neural networks." Advances in neural information
Convolutional processing systems 32 (2019).
Layers
Hyperbolic
Batch/Activation
Normalization

Image Source: Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. 2024. Fully Hyperbolic Convolutional
Neural Networks for Computer Vision. In ICLR.
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Part 3: Hyperbolic Foundation Models




Hyperbolic Foundation Models: Geometric Modes

Division of Hyperbolic Foundation Models based on their geometric modes

* Hybrid Models _Hybrid Models_ —______ Hyperbolic Models | ______
. // \\ //’ \\\
° HyperbO“C mOdels | Hyperbolic Loss : /" Hyperbolic Loss - _|\\
1
E A : ! : é \:
| : : : % |
|
1 €xXpgo : : : %’ :
: Normallzatlon : | e : § :
I I ! Hyperbo 1c 1
! . ! : Model(s : |
| ! I
| o Vg
! Euclidean I : = !
I 1
: Model(s) : : Hyperbohc : é :
| | ! Imtlatlon 1 & |
I I : =
I 3] 1
: T : : /' :
: I
NCENE .[@@@J ,;
I
/
|\\ Data //, \ Data _ &L

N e \—______________________’
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Hybrid Models

Hybrid consists of two components
* First component: Euclidean neural network
* Second component: Hyperbolic loss function Hybrid Models

- —————

Hyperbolic Loss

3. Compute hyperbolic loss (possibly in/ X

combination with Euclidean loss) |

2. Lift the Euclidean output to hyperbolic spa/ —{(®)

through a projection map: e.g. exp,(x) |
: Euclidean

",”’/”””,,,f”J” Model(s)
1. Process the data via one or multiple

Euclidean mode (s)

®
M
Z

N o e e e e =

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 87



Hyperbolic Models (1)

Hyperbolic models
e ALL components are hyperbolic — ______ Hyperbolic Models ___ ____
 Hyperbolic neural networks + hyperbolic loss function ./ hyperbolic Loss

|

7
-

[mperbolic Initiation: often data does not come in the form

aoedg jusbue] 4

of hyperbolic vectors, therefore they need to be initialized in |
hyperbolic space | edelte)
 |f data is already vectorized (Euclidean): lift the data to ’ 12 i
hyperbolic through projection maps: e.g. exp,(x) Hyperolic 3

* If the data is not vectorized: , (_Lnitiatio g
* E.g., token indices: map indices to hyperbolic | @é]@ | |
embeddings vectors and optimized with tailored

\ hyperbolic optimizers / s s i i S e
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Hyperbolic Models (2)

Merbolic Model(s): the initialized hyperbolic \

vectors are then process by one or multiple | Hyperbolic Models
hyperbolic model(s)
* Two additional geometric modes:

* Tangent space models: models that relies on
tangent-space-based methods for its
operations

* Fully hyperbolic models: models that uses only

fully hyperbolic methods for its operations

Hyperbolic Loss: the output of the hyperbolic
Wdels are then used to compute hyperbolic Iossej

/’ Hyperbolic Loss

1
Hyperbollc
Model(s
/7
]

-

aoedg juabue]

4

Hyperbohc
Imtlatlon

J1j0q4adAH A)n4

e e e e o e e

I
I
1
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
|

\—______________________’
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Hyperbolic Foundation Model Overview

Overview of hyperbolic foundation models organized by model architecture +
modality

Architecture Method Modality Geometric Mode Manifold
Transformer, Recursive Transformer HAN [44] Text, Graph Hybrid E
Transformer HNN++ [101] Text Tangent Space P
Transformers and Transformer FNN [18] Text Fully Hyperbolic L
La nguage Models Transformer H-BERT [17] Text Fully Hyperbolic L
Transformer, Graph Transformer ~ Hypformer [115] Text, Graph, Image  Fully Hyperbolic L .
Fine-Tuning HypLoRA [113] Text Hybrid L K: Klein Model
LLM HELM [47] Text Fully Hyperbolic L P: Poincare Ball Model
Vision Transformer Hyp-ViT [34] Image Hybrid LP . .
Vision Foundation Vision Transformer HVT [35] Image Tangent Space P L: Lorentz HyperbOIOId
Model Vision Transformer LViT [49] Image Fully Hyperbolic L
odels MoCo HCL [41] Image Hybrid P
SimCLR/RoCL RHCL [120] Image Hybrid P
CLIP MERU [29] Text, Image Hybrid L
Vision Lan guage BLIP H-BLIP-2 [79] Text, Image Hybrid P
. CLIP HyCoCLIP [88] Text, Image Hybrid L
Foundation Models CLIP L-CLIP [49] Text, Image Fully Hyperbolic L
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Language Transformer: Further Motivation

We saw earlier that on the level of token distribution, there is inherent hierarchy in
texts

* This is also the case when it comes to texts on the level of concepts

* This naturally hyperbolic embeddings! ArsiuBaper

Mathematics Computer Science

K &> ®o®

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781
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Designing Hyperbolic Transformers

Qutput
Probabilities

V( | )
Add & Norm ) o ]

Feed
Forward

Core modules in Transformer

Add & Norm
Mult-Head g
Attention

,m%ﬁ —J 1. FeedForward Layer

Nx
f—bl Add & Norm | T

.

r | \
g —>{_Add & Norm |
Feed
Forward

‘%iiﬂiiid} t“”:!i;ﬁt?oar?} 2. Multi-Head Attention
O 4\ —) L.
‘?oigigizzl O b Postons 3. Addition and LayerNorm
crvang | | emoeding 4. Positional Encoding
Inputs OutIJutS

(shifted right)
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Language Transformer Example: FNN (1)

The first fully hyperbolic Transformer: Fully Hyperbolic Neural Networks Chen et al. (FNN)

Qutput
Probabilities

1. FeedForward Layer |
’b]

Core modules in Transformer

* Uses fully hyperbolic linear layers: fF% (x) | rome
e ﬁ | Add & Norm |
. . _ ti-Hea
2. Multi-Head Attention o l s ) (@
orwart } } X
» Uses Lorentzian centroid based method for hyperbolic mult v | ~@zsm ”dﬁfs-f;r”‘i:f
Multi-Head Multi-Head
Attention Attention
« LAtten(Q,K,V) ) =
Eositidqﬂal D & Positional
. . . ncoding Encoding
* Uses Lorentzian concatenation to combine the heads T O
T I
Inputs Outputs
References: Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021). (shifted right)
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Language Transformer Example: FNN (2)

Core modules in Transformer that are missing/limited in FNN

3. Addition and LayerNorm Prababitcs
4. Positional Encoding
ﬁ
* FNN lacked separate modules for these - they are built in _ o
into the feedforward layers [E"—rw_' L_} I N
* Normalization is performed within X (x) v ﬁu—l =]
* Residual connection and positional encoding are addedas (@3 L)_)J h L(_}—‘J
Encqding ¥ T Encodin
bias terms in fFX (x) T ‘ En?s;}ssrng g
« Assumes they are followed/preceded by linear layers! T e

References: Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).
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Language Transformer Example: FNN (3)

Experimental Snapshot of FNN in machine translation (English <--> German):
 Compared with

* Euclidean Transformer

* Hyperbolic Transformers

- IWSLI’l4 _____ WMT'14_____ -
Euclidean Model d=64 E d=64 d=128 d=256

\ CONVSEQ2SEQ 236 | 14.9 20.0 21.8
TRANSFORMER 23.0 17.0 21.7 25.1

Tangent Space Based [=—— " pmrnnas 220 in.o 194 218 Outperforms Euclidean
HATT 237 1188 225 255

/I.HYBoNET 25.9 ! 19:7 23.3 260.2 | & Hyperbollc
Hybrid &« -

Transformers (of other

Mode! kb eometric modes)
Euclidean 4——————— TRANSFORMERp (Vaswani et al., 2017) 27.3 g
TRANSFORMERy,;, (Vaswani et al., 2017 284 : H
big (Vaswani ¢ ) across all dimensions
Hvbrid ————HATThae (Gulcehre et al., 2018) 27.5
ybori [HyBONET... 1.3 I
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Efficient (Graph) Transformer: Hypformer (1)

Missing modules and limitations of FNN
* Lack of layer normalization, residual connections, and positional encoding

* For processing large graphs: inefficient, quadratic time attention mechanism

Solution by Hypformer:

* Implements layer normalization through fully hyperbolic operations: f,fl K,

* Implements residual connections similarly special case of LResNet: x @; y

* Implements positional encoding by adding learned relative encodings: PEx(x) =
x D, Eflé,l{z (x)

» Uses hyperbolic linear attention for efficient processing of long sequences:
LiAtten;

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781
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Efficient (Graph) Transformer: Hypformer (2)

Learned relative encoding: PEx

LiAtten;
o R — — ——
( —— ) ii Positional Hyperbolic Liner LayerNorm (by HRC) :

éOufpuf

—| Text= i Encoding || _fg Attention
== |
Graph
Feed Forward P

N | Net k
ayer (by HTC) sl el

Fully hyperbolic operations: fIQ,KZ

Optional hyperbolic GNN for
processing graphs

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781
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Experiment Snapshot: Scalability Evaluation of

Hypformer (1)

Method ogbn-proteins | Amazon2m | ogbn-arxiv | Papers100M

#Nodes 132,534 2,449,029 169,343 111, 059, 956

#Edges 39,561, 252 61, 859,140 1,166,243 | 1,615,685, 872

MLP 720+ 0.5 63.5+ 0.1 55.5+0.2 47.2+0.3

GCN [33] 725+ 0.4 83.9+ 0.1 71.7 £ 0.3 OOM

SGC [70] 70.3+0.2 81.2+ 0.1 67.8 £ 0.3 63.3+0.2

GCN-NSampler 735+ 1.3 83.8+0.4 68.5+0.2 62.0+ 0.3

GAT-NSampler 74.6 £ 1.2 85.2+0.3 67.6 £0.2 63.5+0.4

SIGN [21] 71.2+0.5 81.0+ 0.3 70.3 £ 0.3 65.1+0.1
(~ GraphFormer [83] OOM OOM OOM OOM

GraphTrans [73] OOM OOM OOM OOM

GraphGPS [54] OOM OOM OOM OOM .

GraphFormer ) HAN [25] OOM OOM OOM OOM Hyperbolic
Model HNN-++ [60] OOM OOM OOM OOM (Grap h)Transform

F-HNN [9] OOM OOM OOM OOM iled!!

NodeFormer [71] 775+ 1.2 87.9+ 0.2 59.9+0.4 00T er (fa' ed..
\_ SGFormer [72} ———79:5+6:3 89T+ 0724 +03 | 658405

Hypformer 80.4+05 | 89.4+03 | 73202 | 661+ {ﬁ_’)

Successfully working on billion-level graph data
and process 10K~200K input tokens

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781
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Experiment Snapshot: Scalability Evaluation

of Hypformer (2)

GPU memory cost

50 | '
. 4326 —e— Hyperbolic Linear Attention
40 I : —— Hyperbolic Softmax Attention
o e
® 30 ! :
> i ; Low GPU Memory Cost
o 1 1
£ 20 | i ' !
— i ! \ 14.53
0 ;
1
D ] ]
1 2 4 6 8 10 20
#Nodes (107)
More efficiency and save half of running time
ogbn-proteins Amazon2M  ogbn-arxiv
Method Train Test Train Test Train Test
Hypformer (Softmax) 11.9 = 3738 7.8 -
Hypformer (Linear) ( 2.4 1632 25 3 E

Ry, ——— —

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770-3781
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LLM Integration: Hyperbolic Fine-Tuning

(HypLoRA) (1)

Building on existing Euclidean LLMs: a hybrid model
* Maintains flexibility while producing hyperbolic representations

* Leverages pre-trained knowledge Euclidean

Pretrained
Euclidean Weight W =

\ v
X— D>z
1 LLR | \
Euclidean
expo (%) Clogo()—
Hyperbolic

LLR(BA, X) is based on fully hyperbolic operation f, k.

References: Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. 2024. Hyperbolic Fine-tuning for Large Language Models. ICML LLM Cognition Workshop (2024).
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LLM Integration: Hyperbolic Fine-Tuning (HypLoRA) (2)

Review of Euclidean LoRA:
z=Wx+ BAx,B € R?*" A € R"*k

HypLoRA:

. H
Transformation on x X

< - >, Pretrained
z8 = Wxt + logX {LLR(BA, expX (x®)))) ;

2 1 . ) 4
LLR(BAx") = | [11By# || +.By" |5 A ¥
\ ',
eXpo(X) "b«’m
2 1 4
y' = [llax"|| +—, Ax" [
V K

References: Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. 2024. Hyperbolic Fine-tuning for Large Language Models. ICML LLM Cognition Workshop (2024).
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Experiment Snapshot: Mathematical Reasoning

MAWPS: Paul had 95 pens and 153 books. After selling some
books and pens in a garage sale he had 13 books and 23 pens
left. How many books did he sell in the garage sale?

Dataset D in #Train #Test A . . .
ataset Domaln # Traih #Iest AMSWEr  GSMS8K: James decides to run 3 sprints 3 times a week. He runs 60
MAWPS Math - 239 Number

' ?
AR meters each sprint. How many total meters does he run a week:

AQuA Math 100K 254 Option

Sl il S 1000 Number — AQuA: Find out which of the following values is the multiple of

X, if it is divisible by 9 and 127
Iloptionsll: [IIA)36II’ IIB)lzll’ IIC)3II’ IID)9I|, IIE)6II]

References: Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. 2024. Hyperbolic Fine-tuning for Large Language Models. ICML LLM Cognition Workshop (2024).
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Experiment Snapshot: Mathematical Reasoning

Model PEFT Method MAWPS(8.5%) SVAMP(35.6%) GSMB8K(46.9%) AQuA(9.0%) M.AVG Hyp LO RA performs better on harder questlonS.
GPT-3.5 None 87.4 69.9 56.4 389 62.3
None 51.7 32.4 15.7 { 16.9 1\ 24.8
Prefix* 63.4 38.1 24.4 142 | 31.7
Series* 777 52.3 33.3 150422 HyploRA introduce higher-order interaction and
[LaMAjp  Parallel 82.4 49.6 35.3 | 181 42.8
LoRA* 79.0 52.1 37.5 | 1891 44.6
LoRAT 81.9 48.2 38.3 18.5 43.7 i ioc- i
LoRA 8.9 182 383 &5y 47 hierarchies-related terms compared with LoRA.
HypLoRA (Ours) 79.0 49.1 39.1 1 205 | +11%44.4
None 65.5 37.5 32.4 1 150 ! 35.5
Prefix* 66.8 41.4 31.1 | 157 1 36.4
Series* 78.6 50.8 44.0 220 | 47.4 ] .
LaMA.j3p Parallel® 81.1 55.7 43.3 I 205 189  The update of query Q is related to high-order
LoRA* 83.6 54.6 475 1 185 | 50.5
LoRAT 83.5 54.7 485 | 185 1 51.0 ) ,
DoRA 83.0 54.6 0OT 189 ;  NA  Information and token’s norm
HypLoRA (Ours) 83.2 54.8 49.0 I 215 | +16%1.5
None 76.5 60.4 38.4 I 252 48.3
Gemma7s  LORA 91.6 76.2 66.3 I 289 | 68.6
cmma- DoRA 91.7 75.9 65.4 | 2771 680
HypLoRA (Ours) 91.5 78.7 69.5 L 327 H13%713 x|
X
None 79.8 50.0 54.7 L21.0 | 52.1 AQ™P ~ (BA)x + ——— (BA)x.
[LaMA3.g LORA 92.7 78.9 70.8 I 304 | 71.9 6R2
% DoRA 92.4 79.3 71.3 1 33.1 4:%.5
HypLoRA (Ours) 91.6 80.5 74.0 \ 342 1T13-4m2

Improvements over LoORA

LoRA
References: Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. 2024. Hyperbolic Fine-tuning for AQ © = (BA)X
Large Language Models. ICML LLM Cognition Workshop (2024).
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Case Study

Question To have the car for the weekend, Wilson’s report card needs to show that he received 80 or higher

in his math class. His math grade is calculated by the average of 5 test scores. On those tests, he
received: 65, 94, 81, 86, and 74. What is his current math grade? Answer: 80.0

LoRA To find Wilson’s current ma rtake the average of his 5 test scores. First, we

HypLoRA

Numbers (token) are
arranaged based
on their normsin LLaMA 3

HypLoRA provides better understanding of number’s hierarchies (especially for
these leaf tokens) for prediction and accurate computation

References: Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. 2024. Hyperbolic Fine-tuning for Large Language Models. ICML LLM Cognition Workshop (2024).

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 104



Efficiency

Gemma 7B LLaMA3 8B
B I LoRA 12 B [ LoRA
Y 0 DoRA L0 I DoRA
= N S g
@} @}
= 10- L
- o 61 —
5 S
5- o
[j T T T I_‘Tl_l 0 T T T I_I1_|_|
GSM8K  SVAMP AQUA MAWPS GSMSK SVAMP AQUA MAWPS

Although the proposed method increases the computational burden compared to the
original LoRA, it remains significantly more efficient than DoRA, one of the state-of-the-art
adapters.

References: Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. 2024. Hyperbolic Fine-tuning for Large Language Models. ICML LLM Cognition Workshop (2024).
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Hyperbolic MoE & LLM: HELM (1)

Mixture of Curvature Experts (MiCE)
* Intuition: not all tokens exhibit the exact same geometric property
* Itis advantageous to embed each token in a geometric space that is the most suitable for

that specific token

0.14- i 1 Llama-2-7B
Observation: there is a wide variety of Ollivier-Ricci values o1/ | ) Decpoger o
for the tokens in LLMs _ 0101 e
= 0.08- ’ N
© AN
: : 2 1
Mixture of Experts (MoE) provides a natural framework & 0% J l[
0.04 1 Mt ( -”"H‘
0.02 - LJ]’ 1 ] ﬂﬂv
0.00 ﬂﬂ.ﬂﬂ“ i} il “ﬂﬂ [ uﬂau i

—100 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Ollivier-Ricci Curvature

References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature
Experts. arXiv preprint arXiv:2505.24722 (2025).
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Hyperbolic MoE & LLM: HELM (2)

Employ (Kgz) routed experts R; and (Ks) shared experts

j;i Mer
ge Experts
1pv_[ ) &<
'\\ ‘ro‘ec(tlon T< T T T Prckecfio’n,;
Selecting routed experts: ik il [ | -
) (o) ) ] [ o) () ]

. . 9t i X
The routing score is g;; = # where
1) h I-II
A

/ . . . A, Ay
gt,i T St,i If St;i E_l_topk({st;]}' KR) and O OtherW|SE, \\Proiection [ GatingModule J Projectioxll:
where s ; = (x¢)s Vs -~ A &

N\

- -

[ Input Tokens J

(x;); = space dimension of t-th token
Yy, = space dimension of centroid weighting vector

References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature

Experts. arXiv preprint arXiv:2505.24722 (2025).
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Hyperbolic MoE & LLM: HELM (3)

Expert Processing

 The overall model’s curvature is K ( Merge Fxperts ]
* The routed experts’ curvatures are Kp ; { rofection T T T 1 prclecu;f:
) o8 4 < . ‘ ("/
* The shared experts’ curvatures are K ; el prared
‘ (o) ) ] [ o) () ]
Aligning the Manifolds Through Projections ! | i
—_— A -1 A
’ 7 A
KR i K "\ Projection [ Gating Module J Projection)

Zti = —Ri| [ X 4 ! \ 4
N N , [ Input Tokens J

Yt,i = i Xt
\ N
References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature

Experts. arXiv preprint arXiv:2505.24722 (2025).
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Hyperbolic MoE & LLM: HELM (4)

Aggregating Final Output
x: D Mid, (Yt 1, o Yt Kgr Zt, 10 Lt Ko t1,..,1,9:1, ---igt,KR})

[ Merge Experts ]
. . . . 7 <
MIiCE enables better representation of finer-grained ! Profection T T T T projection’
. a4 Routed Shared pi=~
geometric structures s | |
[HFI:IN]] ‘{\HFNNZ] [HFNN]] [HFI?NZ]
A l-I l &
7 AS
',\ Projection [ Gatmg Module ] Projection,:
Y A L

[ Input Tokens ]

References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature
Experts. arXiv preprint arXiv:2505.24722 (2025).
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Hyperbolic MoE & LLM: HELM (4)

Hyperbolic LLM Architecture

e ) > 2\
Hyperbolic Mixture-of- =
L@ Multi-head Latent Curvature Z5 )
= D i H c s
= N g Attention N E Experts (MiCE) [> 0 Z = 8)
INPUT a o c O \ J -IE' o \ ) 3 %-) M
Text tokens P § T —P» g z or 0z or 4
Q-_D E ' 3 o E 4 ™)
> — —
T E a4 Hyperbolic 24 Hyperbolic
L Multi-head Feed-Forward
Attention Network
O 7 O 7

References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature

Experts. arXiv preprint arXiv:2505.24722 (2025).
110

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic MoE & LLM: HELM (5)

Hyperbolic LLM results v.s. Euclidean Baselines trained on the 5B tokens

Model # Params CommonsenseQA HellaSwag OpenbookQA MMLU ARC-Challenging Avg
0-Shot 0-Shot 0-Shot 5-Shot 5-Shot -
LLAMA 115M 21.1 25.3 25.3 23.8 21.0 23.3
HELM-D 115M 20.1 25.9 27.0 25.8 21.2 24.0
77777 ERV3 —120M 192 957 231 217 T8 —————9J7%
| HELM-MICE  120M 19.3 26.0 27.4 24.7 23.5 24.2 |
DEEPSEEK V3 1B 195 76.2 7.4 73.0 027 73.9
| HELM-MICE 1B 19.8 26.5 28.4 25.9 23.7 24.9 |
Case Study: better semantic hierarchv representation
HELM-MiCE DeepseekV3
Gene ral WOFkS (e g hOW If) ‘Words Norm Range Words Norm Range
. ) _- . ! A, How, does, if, there, 36.031-36.396 is, a, connecting, graph, 33.668-33.768
||e Closer to the Or|g| ] than < have, is, any, with, of there, edges, complete,
have, of

specific words (graph,
connecting, edges)

discrete, vertices, edges,
connecting, pair, graph,

complete, many, 10

36.506-36.717

discrete, 10, how, if, pair,
does, with, A, vertices,

any

33.772-33.908

Hyperbolic LLM
outperforms Euclidean
baselines consistently

~
General words (e.g. how, if)
and specific words
(connecting, edges) are
mixed together

4

References: Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature

Experts. arXiv preprint arXiv:2505.24722 (2025).
8/4/2025

Neil He, Menglin Yang, Rex Ying, Yale University

111



Hyperbolic Vision Foundation Models: Hyp-ViT(1)

Hierarchical structures are prevalent in vision data as well!
* Scale-free distribution in quantized vision foundation models that we showed earlier

 Structural hierarchies in the photo itself and/or recognition

Whole-part hierarchy Ambiguity hierarchy

Hyperbolicity in ViTs

CUB-200 Cars-196 SOP  In-Shop

VIT-S 0.280 0.339 0.271 0.313
DeiT-S 0.294 0.343 0.270  0.323
DINO 0.315 0.327 0.301 0.318

References: Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. 2022. Hyperbolic vision transformers: Combining improvements in metric learning. In CVPR. 7409-7419.
Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic image embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 6418—-6428, 2020
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Hyperbolic Vision Foundation Models: Hyp-ViT(2)

Hyp-ViT: hybrid model that adapts existing Euclidean vision Transformers to
hyperbolic space by incorporating a hyperbolic cross-entropy loss

Euclidean Hyperbolic

[
Poincaré fisk O @
{ ~.\\ 5 N "
| g ol |
\ ,/v* 5 L’“'\R
— — E ial — . T ®
. xponentia ey \ 4 -
ViT FC . &7 NVl 3
mapping \ \ {
384d 128d

; Pairwise
® Cross-Entropy

References: Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. 2022. Hyperbolic vision transformers: Combining improvements in metric learning. In CVPR. 7409-7419.
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Hyperbolic Vision Foundation Models: Hyp-ViT(3)

Euclidean Entropy Loss
* Cosine similarity
(spherical) based

/L%E(Zilzj)

\

exp (_ dcos(fi' Zj))
= —log
2. g Seez)

Zi Zj

deos\Zi, zi ) = || —
\_ cos (77 Iz 112 ]2

ik

Hyperbolic Entropy Loss
* Hyperbolic distance based

/L%E(Zilzj)

IIZJ

References: Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. 2022. Hyperbolic vision transformers: Combining improvements in met

8/4/2025

dH(zi,zj) = Poincare Distance

\_

~

exp (— dH(ZTi’Zj))
= —log ;
TP_, exp (— dH(ZTi' Zj))

ric learning. In CVPR. 7409-7419.
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Hyperbolic Vision Foundation Models: Hyp-ViT(4)

Recall@K results Method Dim | CUB-200-2011 (K) Cars-196 (K) SOP (K) In-Shop (K)
1 2 4 8|1 2 4 8|1 10 100 1000 1 10 20 30 ViTs with hvberbolic

A-BIER [36] 512 [57.5 68.7 78.3 86.2[82.0 89.0 932 96.1|74.2 869 94.0 97.8 [83.1 95.1 96.9 97.5 yp
ABE [24] 512 |60.6 71.5 79.8 87.4(852 90.5 940 96.1|76.3 88.4 948 982 [87.3 96.7 97.9 98.2
SM [49] 512|560 68.3 782 863|834 89.9 93.9 96.5(753 87.5 93.7 97.4[90.7 97.8 98.5 98.8 cross-entropy loss
XBM [59] 512|658 759 84.0 89.9(82.0 88.7 93.1 96.1|79.5 90.8 96.1 98.7 |89.9 97.6 98.4 98.6 .
HTL [13] 512 |57.1 68.8 78.7 86.5|81.4 88.0 92.7 95.7(74.8 88.3 948 984 |80.9 94.3 95.8 97.2 achieve better
MS [5¢] 512 [65.7 77.0 863 91.2[84.1 90.4 940 96.5|78.2 90.5 96.0 98.7 [89.7 97.9 98.5 98.8 ]
SoftTriple [37] | 512|654 764 845 904|845 90.7 945 969|786 8.6 918 954 | - - - - performance with
HORDE [20] 512 |66.8 774 85.1 91.0(86.2 91.9 95.1 97.2[80.1 91.3 962 987 [90.4 97.8 98.4 98.7

Proxy-Anchor [23] | 512 |68.4 79.2 86.8 91.6|86.1 91.7 95.0 97.3|79.1 90.8 96.2 98.7 [91.5 98.1 98.8 99.1 f 1 1
NSoftmax [64] 512 [61.3 739 835 90.0(84.2 904 944 969|782 90.6 96.2 - |[86.6 97.5 98.4 98.8 ewer dlmen5|ons
ProxyNCA++ [52] | 512 |69.0 79.8 87.3 92.7|86.5 92.5 95.7 97.7(80.7 92.0 96.7 989 |90.4 98.1 98.8 99.0

IRTg [¢] 384 [76.6 850 91.1 943| - - - - [842 937 973 99.1 [91.9 98.1 98.7 98.9
ResNet-50 [18] 7 [2048 412 53.8 66.3 77.5|41.4 53.6 66.1 76.6|50.6 66.7 80.7 93.0[25.8 49.1 56.4 60.5
DeiT-S [33] T 384 [70.6 81.3 88.7 93.5/52.8 65.1 76.2 85.3|58.3 73.9 859 954 (37.9 64.7 72.1 75.9

Euclidean ViTs DINO [3] f 384 |70.8 81.1 88.8 93.5|429 539 642 744|634 78.1 883 96.0 [46.1 71.1 77.5 8l.1
VIT-S [48] T § 384 [83.1 90.4 944 96.5[47.8 602 722 82.6(62.1 77.7 89.0 96.8 [432 702 76.7 80.5
Sph-DeiT 384 (762 84.5 902 943|817 88.6 93.4 96.2[825 929 97.2 99.1 |89.6 97.2 98.0 984 | Euclidean (spherical)
Sph-DINO 384 [78.7 86.7 91.4 949(86.6 91.8 952 97.4(822 92.1 968 989 [90.1 97.1 98.0 98.4 Cross-Entro
Sph-ViT 384 [85.1 90.7 943 96.4[81.7 89.0 93.0 95.8[82.1 925 97.1 99.1 [90.4 97.4 982 98.6 Py

: Hyp-DeiT 384 [77.8 86.6 919 95.1|864 922 955 975|833 935 974 99.1 |90.5 97.8 985 989~
Hyperbolic Cross- Hyp-DINO 384 |80.9 87.6 92.4 95.689.2 94.1 96.7 98.1(85.1 944 97.8 993 [92.4 98.4 98.9 99.1
Entropy Hyp-ViT § 384 [85.6 91.4 94.8 96.7[86.5 92.1 953 97.3[85.9 94.9 98.1 99.5 [92.5 98.3 98.8 99.1

References: Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. 2022. Hyperbolic vision transformers: Combining improvements in metric learning. In CVPR. 7409-7419.
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Hyperbolic Vision Foundation Models: Hyp-ViT(5)

Visualization of embeddings of Hyp-DINO on the Poincare Disk
* |mages of different classes are clustered towards the boundary, show that the classes are
well separated

Test Train

References: Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. 2022. Hyperbolic vision transformers: Combining improvements in metric learning. In CVPR. 7409-7419.
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Hyperbolic Language Vision Foundation Models:

MERU (1)

Contrastive Language-Image Pre-Training (CLIP) models are foundation models that can process
both language and image data

 Combines a text encoder (e.g. language Transformer) with an image encoder (e.g. vision
Transformer)

The natural hierarchies in texts and images motivates adapting CLIP models to hyperbolic space

Relies on contrastive loss

1% =112 =yl
; ( ) 11 e T 11 e T
x;,yi) = —=lo —510
const\Xj, Vj 2 g i lx=vill2 2 5 . lxi— ;12
Ligje t Ligje t

where x;, y; are text and image embeddings that form a positive pair

References: Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam. 2023. Hyperbolic image-text representations. In ICML. PMLR, 7694-7731.

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 117



Hyperbolic Language Vision Foundation Models:

MERU (2)

Adapting contrastive loss to hyperbolic space
* |nstead of cosine similarity, use negative manifold distance

_Ag(xjy;) _da(x,yj)
B 1 e T 1 e T
Leonst (%,7) = — 7108 oD 2 %8 _anGyp
Z:iB:tje t Z?:tje t

where x;, y; are text and image embeddings that form a positive pair

References: Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam. 2023. Hyperbolic image-text representations. In ICML. PMLR, 7694-7731.
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Hyperbolic Language Vision Foundation Models:

MERU (3)

Hyperbolic Entailment Cone: shining a light cone through a point, where the region is

defined by where the light rays hit

* Given a point x, the entailment cone is defined by the aperture: the angle at which
the boundary makes with x:

2y 7y

K x| — -
el | (text) | \
Top-down view U | XA/$ LN

aper(x) = sin~

LT

Ay
- O (image)

- loss =0

loss = ext(X,y) — aper(x)

References: Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam. 2023. Hyperbolic image-text representations. In ICML. PMLR, 7694-7731.
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Hyperbolic Language Vision Foundation Models:

MERU (4)

The hyperbolic entailment loss is defined by deviation from the entailment cone
* Positive pairs should be within the cone

* Negative pairs should be outside of the cone
The deviation is measure by the exterior angle:

Xt
1 yt_?<x'y>L ‘ ! i
11 () -1 D AN
! | ttexy \
 Top-gavavien %

X .
f}j, i
7 ~
7
-
,

ext(x,y) = cos™

Final loss: L,,,;q:(x,y) = ext(x,y) — aper(x) - .

10 (image)

o0

loss = ext(x,y) — aper(x)

References: Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam. 2023. Hyperbolic image-text representations. In ICML. PMLR, 7694-7731.
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Hyperbolic Language Vision Foundation Models:

MERU (4)

Overall architecture of MERU
* Process the image and text data with Euclidean image and text encoders
 Normalize the Euclidean outputs for stable norm

* Lift to hyperbolic space and compute loss

Euclidean MERU
. Contrastive Loss Contrastive Loss
' ine simiiart vy (neg. Lorentzian distance)
F + Entailment Loss .—‘
L? normalize L? normalize expmy expimy
%‘_ {"img Ol a%
Linear Linear Linear Linear
Projection Projection Projection Projection
Image Text Image Text
Encoder CLIP Encoder Encoder MERU Encoder
Images Text Images Text

References: Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam. 2023. Hyperbolic image-text representations. In ICML. PMLR, 7694-7731.
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Hyperbolic Language Vision Foundation Models:

MERU (5)

Performance evaluation of MERU
* |Image-text retrieval on the COCO dataset

Embedding width

512 256 128 96 64
COCO CLIP 31,7318 314 296 257
text—image | MERU  32.6 327 327 310 265
coco _CLIP 40.6 41.0 404 379 333
image—text | MERU 419 425 42.6 40.5 342
CLIP 384 383 379 352 302
MERU 388 388 388 373 323

ImageNet

MERU consistently outperforms the
Euclidean CLIP model!

References: Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam. 2023. Hyperbolic image-text representations. In ICML. PMLR, 7694-7731.
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Hyperbolic Language Vision Foundation Models:

Embedding distribution of MERU MERU (ViT-1/16) CLIP (ViT-L/16)

I Image embeddings

* Constructing a visual semantic tree g2 Text embedings
oo < °
Leaf NOdeS { gw 0 05 . ‘(H}”|5| I 0.75 10 025 05 0.75 1
b |

i
i

i

i
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i

i

i

i

i
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i

i

' x
i

v

| ﬁ d(@) = [Zopace] (=) = 0.5(1 — (= [ROOTI))
g pic of my labrador  a cat and a dog ~ my cat is phologenici
in the snow playing in the street  look at those eyes! | MERL': €
N J : ’
Intermediate < . . |
Nodes R— é . MERU better reflects the natural
- ot <3 e structure — it embeds texts
The root (higher on the visual semantic
* In Lorentz Space, it is the origin hierarchy) closer to the root than
* In Euclidean space, it is not well defined it embeds images!

* Use the centroid of all embeddings

References: Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna Vedantam. 2023. Hyperbolic image-text representations. In ICML. PMLR, 7694-7731.
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Towards Non-Euclidean Foundation Models

“Hyperbolic-fy Operations/Modules in foundation models”, e.g.,
* Residual Connection -> LResNet

e Attention Mechanism -> Hyperbolic Attention

e Linear Layer -> fF/X fT.K

* Activation -> Pseudo Lorentz Rotation, tangent-space operations

Euclidean Foundation Model

* LoRA -> HypLoRA e B

Euclidean
®z, Operation

But what else?

Goal: Encode geometric structure into the ’

model that the model cannot do a good . @ -
. . . ! &‘Q Operation w
job learning otherwise l\ A\ 4 )\ 4

_________________________________________________

Hyperbolic Foundation Model
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Challenges

* Building hyperbolic foundation models would not be simple
e Require developing methods with abundance of knowledge in differential geometry

e Special geometric functions and difficulty in implementing even basic operations, e.g.
addition
e Scattered prior research and incompatibilities

* Issues with Existing Tools
* Limited Modules

* Inflexibility and Unintuitive-Usage
* Require extensive geometry knowledge

* Limited Model Support: difficult to build advanced foundation models

e Limited to one formulation of hyperbolic space (Poincare or Lorentz)
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Hyperbolic Foundation Model Library: HyperCore

Flexible to Create various SoTA models
* Spotlight Examples: LViT, L-CLIP, Hyperbolic GraphRAG

Comprehensive Modules and Model Support

Intuitive Foundation Model Support
* Focus on making it easier to build foundation model pipelines

User Accessibility

* Use the library without being an expert in hyperbolic geometry

Framework MLPs GNNs CNNs Transformers ViTs Fine Tuning CLIP Graph RAG L™K pnK

HypLL [55] v X v X X X X X X v
Hyperlib [1] v v X X X X X X v v
HyperCore v v v v v v v v v v

References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules.TheWebConf NEGEL Workshop (2025)

8/4/2025 Neil He, Menglin Yang, Rex Ying, Yale University 126



Library Overview

* Modules
* Neural network layers (e.g. linear, convolutional, MLR)

* Transformer layers (e.g. softmax self-attention, linear attention, latent attention,
positional encoding, word embedding, patch embedding)

* Graph related (e.g. graph convolutional layers and neighborhood aggregation)

* Fine-tuning

e Essential modules (e.g. layer normalization, residual connection, pooling layers)
* Optimizers

* Support for different training schemes on Euclidean v.s. manifold parameters
* Manifold

* Basic manifold operations and additional operations (e.g. concatenation and splitting
vectors, hyperbolic entailment cones)

References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules. TheWebConf NEGEL Workshop (2025)
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Snapshot of Library Taxonomy
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References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules. TheWebConf NEGEL Workshop (2025)
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Example: Transformer Block

Euclidean Transformer Block

import torch
from torch import nn
from collections import OrderedDict

class TransformerBlock(nn.Module):
def __init__(self, d_model: int, n_head: int):
super () .__init__()

self.attn = nn.MultiheadAttention(d_model, n_head,

batch_first=True)
self .1n_1 = nn.LayerNorm(d_model)
self .mlp = nn.Sequential (
OrderedDict (

[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", nn.GELU(Q)),
("c_proj", nn.Linear(d_model * 4, d_model)),
]

)
self.1n_2 = nn.LayerNorm(d_model)

def forward(self, x: torch.Tensor, attn_mask: torch.Tensor |

None = None):
1x = self.1ln_1(x)

ax = self.attn(lx, 1x, 1lx, need_weights=False,
attn_mask) [0]

X = X + ax

x = x + self.mlp(self.1ln_2(x))

return x

8/4/2025

attn_mask=

Lorentz Transformer Block w/ HyperCore
import torch
import torch.nn as nn
import hypercore.nn as hnn
from collections import OrderedDict

class LTransformerBlock(nn.Module):
def __init__(self, manifold, d_model: int, n_head: int):

super (). __init__(Q)
dim_per_head = d_model // n_head
self .manifold = manifold

self.attn = hnn.LorentzMultiheadAttention(manifold,
dim_per_head, dim_per_head, n_head, attention_type=’'full’,
trans_heads_concat=True)
self.1n_1 = hnn.LorentzLayerNorm(manifold, d_model -1)
self .mlp = nn.Sequential(
OrderedDict (
[
("c_fc", hnn.LorentzLinear (manifold, d_model,
d_model*4-1)),
("gelu", hnn.LorentzActivation(manifold,
activation=nn.GELU())),
("c_proj", hnn.LorentzLinear(manifold, d_model
*4, d_model-1)),
]
)
)
self.1ln_2 hnn.LorentzLayerNorm(manifold, d_model-1)
self .resl hnn.LResNet (manifold, use_scale=True)
self .res2 = hnn.LResNet (manifold, use_scale=True)

def forward(self, x, attn_mask=None):
1x = self.ln_1(x)

ax = self.attn(lx, lx, output_attentions=False, mask=
attn_mask)
x = self.resl(x, ax)

x = self.res2(x, self.mlp(self.ln_2(x)))
return x
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New Hyperbolic Foundation Models w/

HyperCore: LV1T
* First fully hyperbolic vision transformer with a fine-tuning pipeline, built with HyperCore

Hyperbolic
Positional
Encoding

Hyperbolic Patch ® Hyperbolic ViT Encoder

N
‘.é_’/ : —l bt \?

Patch —>\> i

 / Norm K »H B> "6 Norm O—P@ —>

Patch —>€9_> A \ 9,
Y Hyperbolic o ion Hyperbolic
Patch H_T Attention . Pooling and
Hyperbolic MLP // Classification

Image

m
.... 3
o
(9]
a
a
s
A

References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules. TheWebConf NEGEL Workshop (2025)
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New Hyperbolic Foundation Models w/

HyperCore: L-CLIP

* First fully hyperbolic multi-modal CLIP model

 Compared to MERU, which is a hybrid model

Hyperbolic Contrastive Hyperbolic Contrastive

. - .
+ Entailment Loss + Entailment Loss
€XPo Pol e d___ __Jd___
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I €eXx|
AN N
r Euclidean )
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I : I
: |+ Hyperbolic : bog
| ! |

I

1

N |
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.~_ v}otation; \ \Jkotation;

[ Euclidean Linear ] [ Euclidean Linear ] SFotationy T GFotatior
Euclidean Image Euclidean Text Lorentz Image Lorentz Text
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Images Texts Images Texts

References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules. TheWebConf NEGEL Workshop (2025)
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New Hyperbolic Foundation Models w/

HyperCore: HypGraphRAG

2 Hyperbolic ] Euclidean # Frozen Parameters

enerated
A e \
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Hyperbolic Fine-tunin

First Hyperbolic GraphRAG S e @

mOdEI: 5 . (. Node Features —
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Better represent the Query
knowledge graph structure B
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References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules. TheWebConf NEGEL Workshop (2025)
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Testing New Hyperbolic Models — LV1T

* Image Classification with LViT

* Fine-tuning with HypLoRA on smaller datasets

* Datasets . " bol del here
* ImageNet-1K: 1.2M images of 1,000 classes very nyperoolic model here Is
* CIFAR10 and CIFAR100: 60K images of 10 (100) classes implemented with HyperCore
* TinylmageNet: 100K images of 200 classes
Dataset CIFAR-10 CIFAR-100 TiNY-IMAGENET IMAGENET
Hyperbolicity 5=10.26 §=0.23 §=0.20 -
HCNN [54] 95.02+0.19 77.31+£0.21 65.01 £ 0.29 - .
. p Hyperbolic ResNets
Poincaré ResNet [6] 94.71 £ 0.13 76.91+0.34 63.11 + 0.59 -
Euclidean ViT ViT [21] 98.13 87.13 - 77.91
Tangent HVT [24] 61.44 42.77 40.12 78.2
Space ViT LViT (built by us) 85.02 69.11 53.01 79.4

LVIiT (fine-tuned w/ HypLoRA) 98.18 87.36 74.11 79.4

References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules. TheWebConf NEGEL Workshop (2025)
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Testing New Hyperbolic Models — L-CLIP &

Hyperbolic GraphRAG

* Image-Text Retrieval on COCO benchmark with L-CLIP

* Image encoder: LViT, Text encoder: hyperbolic Transformer

* HypGraphRAG: Question-answering tasks in a graph QA dataset (WebQSP)
» Skip-connected hyperbolic GNN; LLaMA3.1-8B fine-tuned with HypLoRA

Experimental Goal: To demonstrate Model L-CLIP HypGraphRAG

what's possible Dataset COCO WebQSP
Task Image-Text Retrieval Question-answering
Metric Recall@5 Recall@10 Hi@1

Restults 28.0 38.1 73.89 £1.09

References: Neil He, Menglin Yang, and Rex Ying. 2025. HyperCore: The Core Framework for Building Hyperbolic Foundation Models with Comprehensive Modules. TheWebConf NEGEL Workshop (2025)
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Future works

Ultimate goal: Combine non-Euclidean foundation

e 9
\ 7.
o \/

v

From hyperbolic space to adaptive curvature space

Non-Euclidean Foundation Model

\

model with large model for Geometric-aware Al

User inputs:

- Hey, could you help draw some adorable pets for me?

- Aww, those kittens are too cute! Can you sketch a few more of them?

- Oh wow, I'm totally in love with the third pic! Any chance you could switch

R D
.

up the background a bit? E S=
- The second drawing is awesome! Can you make the cat look super happy with 3 :{_—\
a big smile? t;_‘“ﬂ,‘

Examples of generating images from
corse-grained to fine-grained, aligning human cognition
process

»
»

From language model to multimodal models

Multimodal LM
J

Y

8/4/2025
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Future works

Training Future Hyperbolic Foundation Models

FuIIy Hyperbolic Pre-trained Models:
The majority of current works only consider Euclidean pre-trained models as backbones while pre-trained
hyperbolic models (e.g. HELM) does not compare in size

* This does not fully leverage the representation power of hyperbolic space

* Pre-training hyperbolic models at the scale of Euclidean foundation models could lead to more general hyperbolic
representations for downstream tasks

Parameter-efficient Foundation Models:

* Hyperbolic foundation models present the exciting potential for more favorable scaling by compressing geometric
information, whereas Euclidean foundation models’ performance experience exponentially diminishing returns w.r.t
parameter count

Efficient and Intuitive Model Training:

* While libraries such as HyperCore exists, there is a lack of libraries comparable to Euclidean counterparts.
e Forinstance, it is common for prior works to utilize separate optimizers for Euclidean and hyperbolic parameters,
which is not supported by current foundation models libraries such as DeepSpeed.
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Future works

Designing Future Hyperbolic Foundation Models

Hyperbolic Retrieval Augmented Generation:

* Hyperbolic retrieval modules, which leverage the hierarchical and scale-free properties of hyperbolic space, could
provide a more effective mechanism for document retrieval in knowledge intensive tasks due to the natural
hierarchical structure in the external knowledge base

 Hyperbolic nearest neighbor search, ranking mechanisms, and generative architectures could lead to more
structured, accurate, and computationally efficient retrieval-augmented generation systems

Hyperbolic Generative Models
* Hyperbolic generative models would be able to better model hierarchical distributions, e.g. series action states

Geometric Insights for Method Design:
 Geometricinsights could enhance our understanding and potentially lead to more effective and efficient methods
 Example:
* Fully hyperbolic operations still have ambiguous geometric meaning for operations other than linear
operations and HoPE
* Designing fully hyperbolic operations for Poincare Ball model
 Hyperbolic diffusion models lack theoretical guarantees due to the manifold’s uncompactness
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